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Induction velometry in a shock wave 

By G. KAMIMOTO AND M. NISHIDA 
Department of Aeronautical Engineering, Kyoto University, Japan 

(Receivcd 25 April lY69 and in revised form 28 July 1969) 

This paper describes theoretical and experimental studies for induction velo- 
metry in a shock wave. The induced potential gradient profiles across the shock 
is obtained with an assumption that the velocity of the charged particles is given 
by Mott-Smith’s result. The calculated result of the induced potential gradient 
shows that it is not proportional to the velocity of the charged particles, since 
eddy currents are also induced by the existence of non-uniform velocity through 
the shock. The induced potential gradient is measured across the shock produced 
by a shock holder. This result is coinpared with the theoretical result. The experi- 
mental result shows that the charged particles follow the Rankine-Hugoniot 
relation in the velocity. 

1. Introduction 
Electrically conducting material moving in a magnetic field experiences an 

electromotive force acting in a direction perpendicular t o  both the motion and 
the magnetic field. I n  other words, the electric potential is induced in the direction 
of the electromotive force, and is a function of both the magnetic field strength 
and the velocity. If both the magnetic field and velocity are uniform, the in- 
duced potential gradient is proportional to the velocity, and therefore, if the 
magnetic flux density and the potential gradient are known, the velocity can be 
estimated. However, if the magnetic field or velocity is not uniform, induced eddy 
currents exist. The potential difference picked up by the probes is determined 
not only by the local velocity of the flow, but is also influenced by the eddy 
current at the point in question. Therefore, the induced potential gradient is not 
proportional to the velocity. 

Thurlemann (1941) and Kolin & Reiche (1954) analyzed theoretically the 
pipe flow, which had a radial distribution of velocity and was transverse to the 
magnetic field. They obtained the radial distribution of the induced potential 
gradient. Kolin (1943) measured the potential gradient in the radial direction. 
Bouclier & Ames (1961) found that induced eddy currents existed due to the 
edge effect of the magnetic field even if the flow velocity was uniform. Recently, 
induction velometry has been used in a plasma jet wind tunnel and a shock tube 
where the gas behind a shock was ionized. Clayden (1964) obtained the velocity 
of the free stream in a plasma jet using it; however, he neglected the effect of 
eddy currents. Croce (1965) used induction velometry to detect the shock followed 
by ionization in a shock tube, and obtained the particle velocity behind the shock. 
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In this paper, we apply induction velometry to the flow across the shock. Since 
the velocity of the charged particles changes sharply across the shock, there 
exist eddy currents, and therefore the induced potential gradient will not be 
proportional to the velocity. We can estimate velocity profile of the charged 
particles across the shock by comparing the measured potential gradient profile 
with the theoretical one. 

2. Expression of induced potential for model 1 
The fluid is assumed to obey Ohm’s law. The conductivity is isotropic and 

unaffected by the magnetic field or the fluid motion. When the magnetic field is 
steady, the current flow in the fluid is taken to be governed by Ohm’s law in the 
form, j/c = -grad$+vxB, 

where c i s  the electrical conductivity, j is the current density, v is the fluid velo- 
city, B is the magnetic flux density, and $ is the electric potential. Consider the 

(1) 
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FIGURE 1. Partially ionized gas flow across a magnetic field. 

case where there is a flow of the charged particles at  velocity v(z) in the x-direction 
in a pipe with non-conducting wall under a uniform field B that is applied only in 
the x-direction as shown in figure 1. In  our case, 

v, = v, = 0, ?Iz: = v(z), 

B, = BcosB, B, = -BsinB, B, = 0. 

In  the above case, we can obtain the following component equations from (1)  
using cylindrical co-ordinates: 
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Assuming that the electrical conductivity is uniform and substituting (2) into 
div j = 0 leads us to 

We consider a model such as that shown in figure 2, where v(z) = v for z < zo 
and v(z )  = 0 for z > zo. The boundary conditions for this model are 

_ -  a# - 0, at 8 = 0, rr, 
az 

- = O ,  a t  x = + o o ,  
az 

at r = R in region 1, ( 6 4  

= Bv sin 8, at  r = R in region 2. ( 6 b )  ar 

_ -  a# - 0 
ar 

Boundary condition (4) means that the z -component of eddy current does not 
exist at 8 = 0,  rr due to the symmetry of the model with respect to the x-z plane. 
Boundary condition (5) specifies no eddy currents in the z-direction a t  z = + 00. 

Boundary conditions (6) are deduced from the condition that the normal com- 
ponent of eddy current does not exist at  the wall. 

v=o 

z=z, z 

Region 2 Region 1 

FIGURE 2. Model 1 : w(z) = w for z < zo, v(z) = 0 for z > zo. 

Using the standard separation of variable technique, the following expression 
for #, which satisfies the boundary conditions and the condition that # has a 
finite value at r = 0, are obtained: 

(7) 

(8) 

where J,(r) is a Bessel function, and AC), and Afc2,)n, are arbitrary constants. 
And k can be determined as follows: Boundary condition (6a )  gives JA(kR) = 0.  
Putting kR = p, the solution for JA(,u) = 0 are 

for z > zo, 

forz < zo, 

= AS), J,( kr ) sin nB exp ( - kz) , 

#2 = A$iJn(kr)  sin no exp (kz )  +Bur sin 0, 

(9) 
31-2 
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The values of the parameter k corresponding to the values of ,u are 
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kl,n, k2,n, ks,n, km,n, '... 

Therefore, particular solutions are given by 

4, = A$,!n Jn(km,nr) sin n8 exp ( - kmenz),  (11) 

r$2 = A$,Jn(k,,,r)sinn8exp(km ,z)+BvrsinO. (12) 

$1 = 2 C -@iln Jn(km,nr)sinn8exp (-km,nz),  (13) 

42 = 2 C Agln Jn(km, r )  sin n8 exp (km,nx) + Bvr sin 8. (14) 

General solutions are in the form, 

m m  

m = l  R = O  

C O m  

m = l  n=O 

Now, r$ is continuous across = zo along with its first derivative, @/ax; therefore 

c o r n  

m=1 n=O 
C [A$,~,exp(-k,,,z,)-A$~,exp (km,nzO)] Jn(k,,r)sinn8 = Bvrsin8, 

(15) 

(16) AglneXP ( -  km,n~o)  + A$nexp (km,n~o)  = 0. 

Since the left-hand side of (15) is a Fourier-Bessel series, the expansion coeffi- 
cients are given by 

Bv~ORJl(km,lr)r2dr 
A ~ l , e x p ( - k m , l z , ) - A ~ l l e x p ( k m , , z , )  = R so [J,(km.,r)j2rdr ' 

A~~nexp(-km,nzo)-A$fnexp(km,nz,) = o for n + 1. 

From (16) and (17), we obtain the following expression: 

= A$!n = 0 for n + 1. 

Using these coefficients in (13) and (14), we can obtain the following: 
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3. Induced potential gradient for velocity profile across shock 
We consider model 2 shown in figure 3. This problem can be solved by super- 

posing induced potential due to elements of the velocity. The potential at  z = x* 
induced by the f i s t  to thepth elements of the velocity can be obtained in the same 
manner as the induced potential in region 2 of figure 2. The potential at  z = z* 
induced by the (p + 1)th to the rth elements of the velocity can be obtained in 

z=z*(=z,) 

FIGURE 3. Model 2. 

the same manner as the induced potential in region 1 of figure 2. Therefore, the 
potential a t  z = z* is given as follows: 

$(r,  8, z*) = [A$f' + . . . +A$&*)] + [A$$P+l)+ . . . + A@]. (21) 

A#2 and A$l are obtained from (19) and (20) as follows: 
r 
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where 

v i  

u= 0, 

v=o 
-h - 

Z=Z*  z 
FIGURE 4. Model 3. 

Z=Z* z 
FIGURE 5. Model 4: velocity profile across a shock. 

In  the case of model 3, shown in figure 4, the potential a t  x = z* is given in integral 
form as follows: 

Finally, we consider such a model as shown in figure 5,  which is similar to the 
velocity profile across the shock. Since the velocity profile in figure 5 is obtained 
by adding a uniform velocity v2 to the velocity in model 3, the potential in model 4 
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can be obtained by superposing the potential Bv2r sin 8 induced by the velocity 
o2 on (25). Therefore, 

After using (19) and (20) in (26) and arranging, the following is obtained: 

j;Jl(krn, l r )  r2dr 
X - [ jO1-v* exp{-k,,,(z,-z))dv 

/0RIJl(km,lr)12rdr 
v. -v, -I0 exP(krn,l(z*-z)~dv] 2 (27) 

where xis a function of v. Since we measure a#/ay at r = 0 across a shock, we must 
obtain the expression for (a#/ar) ,.=,,. The following non-dimensional quantities 
are introduced: e=an 

(28) 

where L is the maximum slope thickness of a shock, and v1 and v2 are the velocity 
upstream and downstream of the shock, respectively. Using these non-dimen- 
sional quantities and Bessel-function formulae, the non-dimensional potential 
gradient at  r = 0 is 

I P = r/R, 5 = Z I L ,  5* = z*/L, q = 4v1, 

q* = V * / V l ,  q2 = V2/% K = R/L, 

Clearly, the second term in the right-hand side of (29) expresses the effect of the 
eddy current. 

4. Results of calculation 

may be given by Mott-Smith's (1952) solution, 
We assume that the velocity profile of the charged particles across the shock 

where 
M2- 1 

P=-3, 

in which M is the Mach number upstream of the shock. Figure 6 shows the poten- 
tial gradient profiles across the shock, which is obtained by using Mott-Smith's 
solution as the velocity profile. It is seen from this figure that the effect of the 
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eddy current is negligible when K is small, which means that the maximum slope- 
thickness of shock is sufficiently large in comparison with the diameter of the 
pipe. 

FIGURE 6. Effect of parameter K upon potential gradient profile, &f = 4.4. 

5. Experimental work and results 
Experiments have been carried out in a test section of the Kyoto University 

Plasma Jet  Wind Tunnel; they were reported by Kamimoto, Kimurayk Teshima 
(1965), and Kamimoto & Nishida (1965). This wind tunnel is a continuous, open 
circuit tunnel, with an arc heater of 25kW. It has a plenum chamber between 
the arc heater and the test section. Argon was used as a test gas. Typical con- 
ditions are shown below: 

Mach number : 4.4 ; 

electron number density: 4.0 x 10121/cm3; 

atom number density: 2.0 x 1 0151/cm3; 

electron temperature: 3400 OK. 

The Mach number m7as obtained from the measurements of pitot pressure and 
stagnation pressure (plenum chamber pressure). Electron number density and 
electron temperature were measured by the Langmuir probe technique. Atom 
number density was calculated from stagnation temperature, stagnation pressure 
and Mach number. Stagnation temperature was obtained from the following 
relation (see appendix) 



Probe traversing slit 
L _----------------- r 2 -  

Flow- E $1.8 [ 
g3z;a. ’6 
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30 mm-t 

85 mm -- i 

-40 mm- 

The shock was produced by a shock holder, which is shown in figure 7. It was 
made of pyrex glass in order to insulate the shock holder electrically from the 
wind tunnel. A 30 mm-length slit was cut in the shock holder so that the probe 
measurement was possible behind the shock. Since the region where the potential 
gradient varies across the shock is very wide owing to the eddy currents resulted 
from the sharp variation of the velocity across the shock, the measurements have 
been made ranging from 50mm upstream of the shock holder’s entry plane to 
50 mm downstream of it. 

An electromagnet was used in order to produce a magnetic field. A current to 
the electromagnet was supplied by a battery and was changed with a variable 
resistance. A currcnt of 1 amp gave the magnetic flux density of 15 Gauss. 

The potential gradient was measured with probes which consisted of 0.5 mm 
diameter platinum wire. The voltage across the probes was recorded on an 
oscilloscope. 

In  order to measure the potential gradient locally, it is obviously desirable to 
have two probes as close as possible, but, since the probe consisted of wire of 
diameter d, an error of order dlD, where D is the distance between the probe 
centres, could occur in the calculations for potential gradient. To eliminate this 
effect, an optimum distance D between the probes was found. Figure 8 shows the 
voltage across the probes as a function of the distance between the probes. It is 
clear that the voltage across the probes for 25 mm distance is not linear. Since it 

I 
E E ]  E .a 
3 3  
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where To andp, are stagnation temperature and stagnation pressure, respectively, 
and subscripts h and c represent the conditions when arc current is on (hot state) 
and off (cold state), respectively. 

Since it is seen from the above-mentioned conditions that degree of ionization 
is of the order of 10-3, the present plasma is considered to be a partially ionized 
gas. Hence, the behaviour of the atoms is not influenced by that of the charged 
particles, and the charged particles follow the behaviour of the atoms. Therefore, 
it is expected that the charged particles have the same profile of the velocity 
across the shock as the atoms, and that they satisfy the Rankine-Hugoniot 
relation. So, measuring the potential gradient profile across the shock, we investi- 
gated whether the charged particles have the same velocity profile as the atoms 
and whether they satisfy the Rankine-Hugoniot relation. 
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is desirable to have two probes as close as possible, D was taken to  be 10mm. 
For D = lOmm, d /D is S/lOO. An error of order S/lOO is allowable. 

If a voltmeter with a resistance R is placed across the probes, then a current 
will flow, with the result that one probe will take on a voltage slightly higher than 
the floating potential and will collect an excess of electrons, whilst the other will 
be slightly lower than the floating potential and will collect an excess of ions, and 

Distance between probes (mm) 

FIGURE 8. Voltage across probes as a function of distance between probes. 
0, 10.2 Gauss; a, 15.3; 0,  22.9. 

an error of voltage across the probes will occur. This error depends upon the 
resistance of the voltmeter. Clayden (1964) gave the following expression for the 
resistance: 

where Iisat represents ion saturated current, T,  electron temperature, Ic Boltz- 
mann constant and e unit of electric charge. Since typically in the plasma jet, 
T, = @3eV and Iisst = 2mA, 

R 300Q. 

If a voltmeter with larger value of resistance than 300Q is used, the above- 
mentioned error can be eliminated. Since an oscilloscope with the resistance of 
1 M Q  was used, the error due to the resistance was negligible. 

Since the plasma jet has non-ionized surroundings, the boundary of the jet 
may be considered to be a non-conducting wall. Therefore, R, which represents 
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a diameter of a tube with a non-conducting wall, is taken to be a diameter of the 
plasma jet. In  order to evaluate a parameter K ,  which is equal to RIL, the dia- 
meter of the plasma jet and the maximum slope thickness of the shock must be 
known. Muckenfuss (1960) obtained ZIL, where I is a mean free path for atom- 
atom collision ahead of the shock, as a function of Mach number. Using I = l6p /  
5na(2n-makTa)~, where ,u is viscosity, nu the atom number density, ma the mass 
of the atom and Ta the atom temperature, we can evaluate L from Muckenfuss’s 
result. R was determined by measuring a radial distribution of ion-saturated 
current with a Langmuir probe. Thus, we can evaluate the parameter K .  

M=44 
K=24 

-8 -6 -4 -2 0 2 4 6 8 

t* 
FIGURE 9. Comparison between theoretical and experimental results of induced potential 
gradient M = 4.4, n, = 2.0 x 10l6 l/cm8, n, = 4.0 x 10l2 l/cm3, T, = 3400 OK. 0, experi- 
ment; -, theory (equation (29)); -.-.- , velocity profile (Mott-Smith’s solution). 

The comparison between the experimental and theoretical results is shown in 
figure 9. On the assumption that the velocity of the charged particles is given by 
Mott-Smith’s solution, the calculation for (29) was carried out by use of a digital 
computer HITAC 5020 (KDC-11). If the eddy current is neglected, the potential 
gradient will have the same profile as the velocity. However, the experimental 
result shows that the profile of the normalized potential gradient differs from 
that of the normalized velocity, in that, according to the present theory, the 
region where the potential gradient changes across the shock is wide compared 
with the region where the velocity changes. The experimental result agrees with 
the theoretical one, especially downstream of the shock. This agreement means 
that the charged particles are decelerated by the shock, and thak, behind the 
shock, the velocity of them comes to the value given by the Rankine-Hugoniot 
relation. This behaviour across the shock is the same as the behaviour of the 
atoms. It also shows that uniform flow exists ahead of the shock. 



492 G .  Kamimoto and M .  Nishida 

6. Concluding remarks 
In order to investigate whether the velocity of the charged particles should be 

given by Mott-Smith’s solution or not, induction velometry was applied to the 
flow of the charged particles across the shock. 

First, the theoretical investigation was carried out. The profiles of the poten- 
tial gradient across the shock were calculated for several values of the parameter 
K .  The results show that the effect of eddy currents on the profile of the potential 
gradient is negligible, if K is small, which means that the maximum slope- 
thickness of the shock is sufficiently large compared with the diameter of the 
plasma jet. However, since the diameter of the plasma jet is generally larger than 
the maximum slope thickness of the shock, the profile of the potential gradient 
does not agree with that of the velocity. Hence, the measurement of the velocity 
by means of induction velometry seems impossible in a shock zone. However, if 
the calculated profile of the potential gradient is fitted to the measured profile, 
the velocity profile can be obtained. 

In  the second place, the potential gradient was measured across the shock, and 
the experimental result was compared with the theoretical. It is seen that behind 
the shock, the normalized value of the potential gradient approaches that of the 
downstream velocity given by the Rankine-Hugoniot relation. Hence, it is 
concluded that the charged particles are decelerated by the shock in the same way 
as the atoms, and that they satisfy the Rankine-Hugoniot relation. The experi- 
mental result shows that the measured profile of the potential gradient is similar 
to the theoretical one. We wish to propose that the velocity profile of the charged 
particles is close to that of the atoms only in a partially ionized gas. 

Appendix 
Stagnation temperature can be estimated from the measurements of stagnation 

pressures as follows: Assuming that, for il given mass flow through a nozzle, the 
thickness of the boundary layer is independent of the temperature of the gas, we 
may write &A*.,* = pz A*az, 

where p*, A* and a* are density, cross-sectional area and sonic velocity a t  a 
nozzle throat, respectively, and the subscripts h and c show the conditions when 
the arc current is on (hot state) and off (cold state), respectively. Since 

(A11 

where y is a ratio of specific heat and the subscript 0 denotes stagnation condition, 
the following relation can be obtained: 
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Using (A3) and (A4) in (Al) ,  

By measuring stagnation pressures for a given flow rate when the arc current is 
on and off, respectively, stagnation temperature for the hot state can be calculated 
from the above relationship, taking To, as room temperature. 
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